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ABSTRACT: The performance of parametric conversion in achieving number amplification

and duplication is analyzed. It is shown that the effective maximum gains G. remain well
below their integer ideal values, even for large signals. Correspondingly one has output

Fano factors F. which are increasing functions of the input photon number. In the inverse

(deampllfier/recombiner) operating mode, on the contrary, quasi ideal gains G. and small
factors F. "" 10% are obtained. Output noise and nonldeal gains are ascribed to spontaneous

parametric emission.

i. INTRODUCTION

The ultimate transparency of optical networks is essentially quantum-limited and any improvement

beyond the standard performance depends on availability of nonstandard high quality quantum

amplifiers. The photon number amplij_er (PNA) sad the photon number duplicator (PND) are the

quantum devices which are needed in direct detection. 1 The PNA ideally should at_ect the state
transformation

In) ---, IGn) (1)

for integer gains G and input eigenstates In} of the number. Similarly, the PND, instead of

amplifying the photon number, produces two copies of the same input state for eigenstates of

the number, namely

In) ----, In, n) • (2)

Both devices are particularly suited to local area network environments, where the minimum loss for

user-derivation is 3dB (in average), and transparency rapidly degrades with the increasing number
of users. In such situation the PNA represents the ideal preamplifier to be inserted before each

derivation, whereas the PND--which ideal]y realizes the quantum nondemolition measurement of

the number--could itself be used as an ideal Iossless optical tap.

The PNA and PND could also be profitably used in the inverse operating mode, namely the

PNA as a number deampli)_er and the PND as a number recombiner. The number deampllfier could

be used as a number Jqueezer, allowing production of subpoissonian states from coherent light; the
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number recombiner, on the other hand, could produce novel nondassics] radiation from input twin-

beams [an example of such application in production of phase-coherent states _ is proposed in Ref.

[3]].

The concrete realization of high quality PNA and PND for practics] applications is am arduous
task. As explained in Ref. [4], number conversion, in a way similar to the customary conversion,

requires a medium with a X (2) or X(3) susceptibility, but here with a phase-dependent polarizability.

More precisely, almost ides] number conversion can be achieved upon modulating the nonlinear

susceptibility at a (G - 1)-submultiple of the wavelenght of the amplified mode, G being the integer
gain [feaslbillty studies of number converslon using multlp]e quantum wei_ heterostructures are

currently in progressS]. The required phase-dependent polarizability in a X(2) or X (_) medium may

also be regarded as an intensity-dependent coupling for a X(G)or X(a+l) medi_ (s_ply from polar
decomp0sit_on Of the bos0n _e|d operators). T_s suggests that,_ g_-two PNA should be simpler

to realize than a generic G > 2 amplifier. However, as also explained in this paper, the intensity

dependent coupling should follow the power low (ata + 1) -I/2, ata being the number operator of the

amplified mode. Such a decreasingfactor is essentially the (1 + I) -t/_ saturating behaviour of a two

]evei system effective susceptibility in the inhomogeneous-brosdening limit, s but it is not obvious

that this power low--which is obtained in &semlclassics] context--could survive in the quantization
procedure.

The previous observltions quite naturally lead to ask if the conventions] conversion could

somehow simulate the number conversi0n, and what would be the range of physics] parameters

where ides] behaviour is better approximated: this is the subject of the present paper. Quite

unexpectedly (see for example Ref. [I]) we find that ides] behaviour is never approached, even in

the fimh of large input signs]s. The most striking result is that conversion is never complete and,

therefore, the effective maximum gains G. remain well below their integer ides] values, even for large

input photon numbers: quutum mechanics thus revea_ its subtle nature even for large quantum

numbers, here in form of noise in amplifiers [for a discussion on applicability of the correspondence

principle in a different context, see Ref. [7]].
The inverse devices--namely the number deamplifier and the number recombiner--are better

approximated by parametric conversion than the direct ones. We will show that ides] gains are

achieved in the large-n limit, whereas Fano factors F. remain nonvanlshin 8 but small (F. _- 10%).
Therefore, it seems that at present the devices which are simplest to realize concretely should be

the number desmpllfier and the number recombiner (even though probably the limited output noise

of the deamplifier could not be satisfactory for applications as number squeezer).
After presenting the theory of the ides] devices in Sect.2, the connections between the

conventions] and the number conversions are explained in Sect.3, where a simple mean field approach
for analytical evs]uation of the conversion time is also given. In Sect.4 the announced numerical

results on conversion times, effective gains and Fsno factors are presented. In Sect.5 we conclude

with some remarks on the physicsJ interpretation of the nonides] behaviour in terms of spontaneous
parametric emission.

2. THE IDEAL NUMBER AMPLIFIER/DUPLICATOR

In the Heisenberg picture the ideal PNA corresponds to multiplication of the number operator by

the integer gain G

a'a-_ Ga'a, (3)

a being the annihilator of the amplified mode of the field. Because of the integer nature of ata,
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the deamplifier does not triviaLly correspond to replsce G into G -1 in Eq. (3). ActuaLly the ideal

deLmplification is the following

a'a-. [G-'ata], (4)

where [z] denotes the integer pgrt of z. As a consequence, even in the ideal cMe, the de_rnpllfication

has am input-dependent effective gain G.

G. = [G-'n] __G-' (S)
11

for n input photons, and G. -_ G -1 for lazge n. [As an exaanple, the c_ G = 2 is depicted in Fig.

4.] In terms of the shift operator _+ : _+]n) = In + 11, the transform&tion (4) is obtained as follows

_+ __(_+)c, (0)

where now (_+)G]n) = In + G). In fact, the m=p (6) corresponds to the following 3

,' -_ ,I_) , (7)

where ale ) is a boson oper-tor creLting G photons at a time, s na_nely

ale)l,*)= _/[O-'ni + 1In + G), (8)

The explicit form of a_G) is

-- [.,o,,,,,.]= (,)

= _! (at) G (10)

and from Eq. (10) it follows that

which is the desmplification (4).
transformation

alG)a(G) = [G-'ata], (11)

The direct amplification (3) corresponds to the inverse

"I,) " "' (12)

[see Ref. [3] for more details about these maps]. The trusformations (7) and (12) _e essenti*lly

permutations of two different types of boson. For commuting modes In, c] -- In, c t] = 0 the permuting
rasp a ,--, c is realized by the Heisenberg evolution

where

PaP = c, PcP= a, (13)

_ ., o,.)]P=P' exp(i_cc)exp[-i;(a'c+ exp (14)

73



However,asa and a(c) do not commute, it is convenient to consider & simultaneous change of the

field mode (namely the amplifier s]so converts the frequency or changes the field polarization). In

this case the amplifying operator is

% t

The operator (15)j1ow attains the transformations

p(c)(i ® _+)pcc> = (_+)c ® i, p<c) [(_+)a ® i] p(a) = i ® _+, (16)

where in the tensor notation (_i ® (_2 the first entry is for the a mode and the second entry for the
c mode. The Schr_dJnger evolutions of the number eigenststes corresponding to the amplifying _d

deamplifying operating modes are

P(u)[0,n) = IGn,0) , (17)

V(c)ln,0) -- [G (a-'n), [a-l,]), (18)

where (z) = x - [z] denotes the fraction,d part of z and In, m) = In). @[m)c. If one would consider
only one mode in the above transformations--say a--a frequency conversion P(,) is needed. In this

case the evolutions (17-18) rewrite

P(c)P(,)[-,0) = Jan,0) (19)

P(t)P(c)10,n) = [O (G-'n), [G-'m]>, (20)

whereM totAny ignoring the mode c corresponds to trace the transformations (19-20) over this mode,
adopting a density matrix representation for states. In this w&y nonunita17 transformations for the
reduced density matrix of the signs] mode - are obtained, which do not preserve the Newmann-

Shannon entropy: these are the 'photon fractioning' and 'mnltlphoton' transformations of Refs.[3,9].

The mode c is responsible of the added noise which is present even in the ides] case (see Eq. (5))

and corresponds to the 'idler mode' of the customary linear amplification. _

Apart from the _ phase shift--which can be obtained by changing the optics] path of the
b mode and which, however, for an input number eigenstate corresponds to an irrelevant overall

phase factor--the evolution operator (15) comes from the interaction Haml]tonian in the Dirac

picture

H, = .lo)c+ b.c. (21)

for a dimensionless evolution time

" (22)
T_ _ m ,

2

The Hami]tonian (21) has the following constants of motion

_._ __ a+_ + Gc+c, (23)

d+.,t= G (G-'<+'<z) = G (G-'+...+) , (24)

and, because of identity (24), only _ must be specified. In the following evs]ustions we use the

basis of the Hi]bert subspace corresponding to fixed _._ eigenvaiues

]n>0_= [J._ - Gn, n> , n = 0, 1, ...[G-',.+] (25)
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In this basis Eqs. (17-18) rewrite

P(c)[n)c. = 10)C. , (26)

P(o)lO),,-- I[G-lnl)., (27)

whereas the Hamiltonian (21) takes the tridiagons] form

"(') I- + 1). (28)Hlln). = a(.')ln - 1)o + ",,+l

,,_')= _/n(la-'o]- n +1). (29)

Conservation of the interaction Hsmiltoniu (21) itself corresponds to the resonance condition

Gwo = we. In the nonresonating case a third pump mode d is needed with wd = Gw° - we: Eq. (21)

is obtained from the interaction Hamiltonian in the Schr6dinger picture

H' = a_G)Cd + h.c. (30)

in the parametric approximation of classics] undepleted pump, namely with d in a highly excited
coherent state.

The photon number dupUcator in some respect is similar to the gain-2 photon number amplifier.
Instead of amplifying the number of photons, it produces two copies of the same input state for

eigenstates of the number operator. If the input copies lure carried by the modes a and b whereas
the output by c, the duplication map reads

IO,O,n) _ In, n,O)

and is triviaZly inverted for no =nb [for the genera] case see Ref.

(31) corresponds to the Heisenberg evolution

_+ ®_+®i--,i®i®_+,

(31)

[31]. The state transformation

(32)

which is obtained as permutation of the boson operators aO.1 ) and c, where alt.x ) now denotes the
two-mode creator

al,.1)ln.,nb ) = _/(min{n°,nb}) + 1In° + l,nb + 1), (33)

[a(m),all.x)] = 1, [a(x,i),a)a + b'Cb]= 2a(m ) . (34)

The following realization of a_l.l ) is obtained in Ref. [3]

a_u) = a)b) I (35)
_+1

In a way ans]ogous to the PNA, the Dirac picture interaction HamiltonJan of the PND is

H,= ,_.,)c+ b.c., (36)
with constants of motion

1 (=ta + b'b+ 2ctc) ,iv=

JD = a)a - b)b .

(37)

(38)
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The Hi]bert subspace of interest for duplication corresponds to do = 0; the subspaces for fixed

eigenvalues so are spanned by the eigenvectors

In),p = laD - n, so - n,n). (39)

For fixed SD the Hami]touian (36) has the tridiagonal form

H,I-.) = B(.')I- - 1). + 1)., (40)

/_(,°) = _(s - n + 1)n. (41)

Frequency conversion and simultaneous duplication require a classic =I undepleted pump mode d at

frequency w_ = w= + wb -- We, with interaction Hsmiltouian

_I' = a_l,,)cd + h.c. (42)

3. NUMBER-OPTIMIZED DOWNCONVERSION

The Hamiltonians (30) and (42) are complicated by the occurrence of the multiboson operators a_c )

and a_1.=). An outlook at Eqs. (10) and (33) reveals that the G-photon amplification corresponds to

a X (G+l) susceptibility and the duplication to a X (3). In the followings the G = 2 case--the simplest
to attain in prsctice--wiU be considered only. For (ata) _ 2 the two photon operator a_z) can he

approximated as follows

a_,) _- at' [2(ata + 1)] -_ , ((ata) _ 2). (43)

On the other hand, for dD = 0 the two-mode operator a_l,=) is simply

a_l.=) = at(at= + 1)-½bt , (ata = Ub). (44)

Hence the Ha_uiltouians (30) and (42) become

H' _ a t' [2(ata + 1)]-* cd + h.c. (PNA), (45)

:B' = at(ata + l)-½btc4 + h.c. (PND). (46)

As a crude approximation we substitute the intensity-dependent factors in Eqs. (45-46) with their

constant average values and use the customary four wave mixing Hsmgtonians

[_FW^I "- at2cd + h.c. (PNA), (47)

fIFwM = atPcd + h.c. (PND) • (48)

In the parametric approximation of undepleted classical pump d, Eqs. (47-48) correspond to the
interaction Harniltonians

_rz= at2c+ h.c. (PNA), (49)

H/ = atbtc + h.c. (PND) • (50)
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Theinteractiontimeisrescaledby v_, ld being the intensity of the pump d: the relation between

the dimensionless time 7"and the read time t (nLmely the length of the nonlinear medium) now reads

,"= • (51)
The Hamiltonians (47) and (48) were already suggested by Yuen I, who inferred the amplifying

performance from the conservation laws (23-24) and (37-38), with the assumption of complete

conversion of the input signal. However, we will show that complete conversion is never achieved,

apart from the case of one input photon. As an example in Fig. 1 the averse output photon

number is plotted for Hsmiltoaian (48) versus the interaction time _', for both cases: number

duplicator ((no)0 =(nb)o = 0, (nolo = n,) and number recomblner ((n,)o = (_tb/0 = n,, (no / -- 0).

An oscillatory quasiperiodic (or long-time periodic) behavior is evident, conversion never being

complete at any time: the ideal gain is not reached, and the unconverted photons contribute to

the output noise. Therefore, the saturating f_tors in Eqs. (45-46) are crucial to get complete

conversion. Semiclassically a similar saturating behavior oc (1 + I)-½ is obtained for interaction

of radiation with a two ]eve] system in the inhomogeneously-broadening limit or in the adiabatic-

following regime: s however, a full quantum treatment is still lacking and would require a wideband

• nalysis. Here we only consider the performance of parametric HsmUtonlans (49-50) in achieving
approximate PNA and PND. In this case the interaction time 1- = 1-. for conversion depends on the
input photon number n,

{ /n_)o , (/n,)o = 0 : direct operating mode),n, = (n°)o, (/n_)0 = 0 : inverse mode), (52)

which, in order to simulate the intensity-saturating low in Eqs. (45-46), should behave as follows

_'. _ ".½ (53)

The conversion time (53) could be obtained tuning the pump intensity on the input photon number

n,: for n, varying in a wide range, this would require a suited feedback mechanism based on a

quantum nondemolition measurement of n,. In the following we give more &tour&re evaluations of

r., using either analytical methods (a mean field approximation) and numerical calculations. The
results obtained in the two ways will be compared and discussed in the end.

3.1 A mean field approzimation

In Ref. [10] a ]inearization procedure for parametric conversion has been proposed, where

Hamiltonians (49-50) are approximated in a selfconsistent way by the ideal ones (21) and (36).
As we will see in the followings, this approach is correct only in the limit of large input photons

numbers in the amplified/duplicated channels (i.e. a and b modes), namely it is suited to describe

the inverse operating mode only. The method allows evaluation of the conversion time I-.: its major

Limitation is that it leads to exact conversion and, therefore, there is no systematic way to estimate

quantum fluctuations and nonideal gains. As s consequence, the direct operating mode cannot be
described in terms of the time-reversed transformation of the inverse mode, because in this case

knowledge of the output noise become essential. Therefore, in this section we snslyze only the
deamplifler / recombiner case.

The starting point of the method is to rewrite Hamiltonia_ns (49-50) in a form similar to the
ideal ones (21) and (36), namely

H, =/(ata)Ac + (54)
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where

and

A= ,/ ,(2) (PNA), (55)
/ nO.1) (PND)

(2z+3-(-1)=) ½ (PNA), (56)f(z) = (z + I)½ (PND).

The operator function f(ata) will be treated M & c-number time-dependent e_ective coupling, to

be determined seLfconsistently a poste_o_. The Hsmiltonian (54) is rewritten M

H_= fC=t,,)Ae*+ f(='=- _,)A'c, (57)

where, in order to have a unified description of the two devices, the integer number v is used

1 (PNA), (58)v= 2 (PND).

We write a mean field Hamiltonian taking the intermediate value f(a*a) = f(ata - 4) between the

two forms in Eq. (57) and averaging on the input state. One obtains

,V,,F = l(no("))[Ac' + h.c.] , (59)

where

and

..(,-) =/,t(.),,(,-))o, (60)

(the oscillatin.g (-1) "'(') term in Eq. (56) is neglected). In the Dirac picture the time evolution of
an operator O is written -. follows

(_(_') __ exp (ii/avl") (_ exp (-iJ_r°_ ") , (62)

using the time-avertged Hamiltonian f/o_

=1,./o" =o(,-),. (63)
o(,-)= fo"l(,,°(,-')),t,-'. (64)

The evolution of the operators A and c takes the simple form

A(,-)= AcosO(,-)+ i_sino(,-) (65)
c0" ) = c cos0(1") + iA sin 8(_') • (66)
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Figure I: Time evolution of the output signal {_o) (figures on the top) and of the r.m.s, output

noise _ (figures on the bottom) for parametric conversion (Hsmi]tonhm (50)) of input number

states with n, = I0. The two figures on the left refer to the number duplicator ({n_)o = {nb)u =
0, {nc)o = hi); those on the right to the number recombiner ({r_.)o = {nb)o = n,, {n_) = 0). The

small circles enclose the conversion point corresponding to r = y..

We are now in a position to evaluate no(r) selfconsistently. From Eq. (65) one has

nd(_') = (At(1")A(_'))o = (A*A)o cos' 0(I"). (67)

For large input photons ni and v = 1 the expectation n._ can be approximated as

-A = 1,_./21_-_,/2. (68)

From Eqs. (64) and (67) we obtain the following integral equation for no(r)

Z",_°(,-); ,_,cos' 0(,-) ; ,_,cos' /(,_.(,-'))d,-'. (69)

Differentiation of Eq. (69) leads to

=d0(,,,co, 0+- (70)
From Eqs. (65) and (69) one can see that complete conversion occurs at ¢ = I". such that

7r (71)o(,-.) = _..
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at n,

Figure 2: The best conversion time r. for parametric Hamiltonians (49-50) (PNA on the left

and PND on the right). The squares are for the amplifier/dupllcator, the circles for the

deamplifier/recombiner. The lines without dots represent the mean-field approximation.

After integrating Eq. (70) from 0 = 0 to 0 = _ we find the conversion time as a function of the
input photon number n,

r.=v-½ hi+g; K

where K(k) denotes the complete Jacoblan elliptic integral

K(t) =/o_(_ - ksin'=)-_. (73)

For large numbers n,, using the asymptotic behavior K(k) ... - log v/1 - k for k --* 1, one obtains

1".... _v-½n-½ logn , (T4)

which, a part from a logarithmic correction, has the same form of the preliminary result (53).

5. NUMERICAL RESULTS

The quantum evolution of input number eigenstates for the Hamiltonians (49-50) is evaluated
numerically, taking advantage of the trldiagonal forms (28) and (40), which now read

=c.)= _/,_(,_ 2, + 1)(, - 2,_+ 2). (, = ,°).
_') = v_(, - ,, + 1). (, = ,o).

(75)

(78)
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Figure 3: The maximum effective gain G. (corresponding to the conversion time _'. of Fig. 2)

for parametric Hamiltonians (49-50) (PNA on the left, PND on the right). The squares are for

amplification/duplication, the circles for the inverse operating mode.

The evolution of the output signal has been checked using the numerical results in Re{. [II]. In

Fig. 1 we report a sample of the evolution for the PND. The time-dependence is periodic or

nearly periodic for very low input photon numbers n,, whereas it becomes more and more irregular

(essentiaLly irreversible) for increasing n,. Qualitative dii[erences between the direct and the inverse
operating cases are evident. In the direct case the output signal exhibits maxima corresponding

to high noise level, whereas low noise occurs only for depleted signal. In the inverse case, on
the contrary, the first occurrence of a local maximum for the signal coincides with the absolute

maximum, whereas the relative noise is always well below the subsequent values (this gap being

an increasing function of ,_,). The conversion is never complete in both cases, however, it is more

ei_cient in the inverse operating mode, due to the low noise at the output. The conversion time _'.
has been identified as the time corresponding to the first local maximum of the signal (in the direct

operating mode this could be slightly lower than the absolute maximum). The same features in the

time evolution can be found for the PNA approximated by the conversion Hami/tonian (49), with

analogous differences between the direct and inverse operating modes.

In Fig. 2 the conversion time I". is plotted against the input number n,, for both Hamiltonians

(49) and (50). The direct and inverse operating modes lead to two different curves, the former
corresponding to longer conversion times _'. (a part from some features which are peculiar of the
deamplifier for low inputs n,, and are reminiscent of the fractional behaviour (68)). The mean field

approximation, which is pertinent only to the inverse operating mode, is reported for comparison.
A good agreement is found for large n,, better for the PND than for the PNA. For large n, numerical

best fits give power-low behaviours of the form _'. -_ n -°, with a -._ .4 or smaller.

In Fig. 3 the maximum effective gain G. (corresponding to the conversion time _'. in Fig. 2)

is reported. One can see that parametric conversion when used as a gain-two number ampGfier
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Figure 4: Ei_ective gain G. for the deamplifier with G = 2: circles and full line describe the

parametric conversion (Hami]touian (49)); triangles and full line describe the intensity-saturating
Hami]toaian (45); dot-dashed llne corresponds to the ideal deamplifer (5).

leads to an effective gain O. which is a decreasing function of the input signal n,, approaching the
value G. __ 1.28 for large n,, well below the ideal gain. In a similar fashion the effective gain of the

duplicator O. = In°(r.))/(nc(0)} tends asymptotically to O. "_ .78. The inverse operating mode,

on the contrary, behaves quite well, the deamplifer achieving the ideal O. = 1/2 gain and the

recombiner G. -- I in the large r_, limit. The deamplifier gain is compared with the ideal one (5) in

Fig. 4, where also the intensity-saturating case (45) is reported [notice that in the direct operating

mode the intensity-saturating Hand]touians (45-46) ]cad to ideal behaviour].

Finally, in Fig. 5 the output Fano factors F. at the conversion time r. are plotted. It is evident

that parametric conversion lead to noisy PNA and PND, with F. --. n -_ and exponent _ slightly

lower then 1: this corresponds to an output signal-to-noise ratio which is slowly (logarithmical]y)
vanishing. The number deamplifer and recombiner are better approximated, with F. _- .13 for

large n,: on the other hand, the intensity-saturating Hamiltonian (45) leads to vanishing F. for

large n, (F. is exactly zero for even n,.)

6. CONCLUSIONS

We end with some remarks on physical interpretation of numerical results. We have seen that

parametric Hamiltouians (45-46) are not good candidates for number amplification/duplication

devices, whereas they could be profitably used to achieve approximate number deamplifica-

tion/recombination. Here we emphasize that the source of noise in the simulated number devices is

the socslled spontaneous p_rametric emission. 12 As a matter of fact, as explained in Ref. [11], the

Hamiltonians (45-46) are formally similar to the Hami]tonian of a laser amplifer: in particular, Eq.
(46) can be put in correspondence with the Hamiltonian describing a duster of N two-level atoms
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Figure 5: The Fano factor F. at the conversion time r. of Fig. 2 for parametric Hsmiltonians (49-50)

(PNA on the left and PND on the right). The squares are for amplification/dupllcation, the circles

for the inverse operating case. The triangles correspond to the intensity-saturating Hsmi]tonian

(45).

interacting with one (resonant) mode of radiation

H,r ocat.l_ + a3+, (77)

where J.. = _N=_ o_, are the collective spin-flip operators for atoms. In fact, the ang-.dar momentum

operators can be represented in terms of the two mode-operators 5 and c as follows

I (ctc_btb) ,j÷ = , J_ = b'c, J, =
(78)

1 (ctc+btb) 3= N,

When operating as a PND the Hamiitonian (46) acts on input states with na = rib: in the direct

operating mode one has (n,)0 = 0 and (no)0 = n,, whereas in the inverse (n.)o = n, and In_)u = 0,

namely [-_/I - J in both case: this is exactly the spontaneous emission limit for the parametric

converter (as opposed to the noisless coherent superradiant limit corresponding to M = 0). Thus,

in conclusion, both the output noises and the nonldea/effective gains are signs of the spontaneous

parametric emission in the converter.

ACKNOWLEDGMENTS

We are grateful to R. Simone11; for numerical checks. This work has been supported by the Mmutero

dell'Universitd e della Ricerca Scientij_ca e Tecnologica.

83



REFERENCES

1 H. P. Yuen, in Quantum Arpect.t of Optical Communicationa, Ed. by C. Bendjabal]ah, O. Hirota,
S. Reynaud, Lecture Notes in Physics 378 Springer, Berlin-New York, (1991), p.333

2 J. M. Shspiro and S. R. Shepsrd, Phys. Rev. A 43, 3795 (1991)

3 G. M. D'Arimlo, Int. J. Mod. Phys. B 6, 1291 (1992) see also reference therein

4 G. M. D'Ariano, Phys. Rev. A 45, 3224 (1992)

5 P. N. Butcher and D. Cotter, The elements of nonlinear optics (Cambridge University Press,

Cmnbridge, 1991)

6 G. M. D'Ariano, C. Mscchlsvetlo, Lnd M. P,u-is (unpubtished)

7 S. L. Braunstein, Phys. Rev. A 42, 474 (1990)

8 R. A. Brandt and O. W. Greenberg J. Math. Phys. 10 1168 (1969)

9 G. M. D'Ariano, Phys. Rev. A 41, 2636 (1990); Phys. Rev. A 43, 2550 (1991)

10 J. Kstriel and D. G. Hammer, J. Phys. A 14, 1211 (1981)

11 D. F. Walls, in Q_antum Optics, Proceedings o_ the ScottL_h Uni_ersit F Summer School, lOth;

Edinburg 1969, edited by S. M. Kay and Msitland (Academic, New York, 1970), p.501

12 R. Grsham, in the same volume of Ref. [12], p.489

84


